Quantcast
Channel: Political Science Archives - Marginal REVOLUTION
Viewing all articles
Browse latest Browse all 188

Tetlock on Testing Grand Theories with AI

$
0
0

Testing grand theories of politics (or economics) is difficult because such theories are always contingent on ceteris paribus assumptions but outside of a lab, all else is rarely the same. The great Philip Tetlock has run multi-decade forecasting experiments but these are time and resource consuming. Tetlock, however, now suggests that LLMs could speed the process of testing grand theories like Mearsheimer’s neo-realism theory of politics:

With current or soon to be available technology, we can instruct large language models (LLMs) to reconstruct the perspectives of each school of thought, circa 1990,and then attempt to mimic the conditional forecasts that flow most naturally from each intellectual school. This too would be a multi-step process:

1. Ensuring the LLMs can pass ideological Turing tests and reproduce the assumptions, hypotheses and forecasts linked to each school of thought. For instance, does Mearsheimer see the proposed AI model of his position to be a reasonable approximation? Can it not only reproduce arguments that Mearsheimer explicitly endorsed from 1990-2024 but also reproduce claims that Mearsheimer never made but are in the spirit of his version of neorealism. Exploring views on historical counterfactual claims would be a great place to start because the what-ifs let us tease out the auxiliary assumptions that neo-realists must make to link their assumptions to real-world forecasts. For instance, can the LLMs predict how much neorealists would change their views on the inevitability of Russian expansionism if someone less ruthless than Putin had succeeded Yeltsin? Or if NATO had halted its expansion at the Polish border and invited Russia to become a candidate member of both NATO and the European Union?

2. Once each school of thought is satisfied that the LLMs are fairly characterizing, not caricaturing, their views on recent history(the 1990-2024) period, we can challenge the LLMs to engage in forward-in-time reasoning. Can they reproduce the forecasts for 2025-2050 that each school of thought is generating now? Can they reproduce the rationales, the complex conditional propositions, underlying the forecasts—and do so to the satisfaction of the humans whose viewpoints are being mimicked?

3. The final phase would test whether the LLMs are approaching superhuman intelligence. We can ask the LLMs to synthesize the best forecasts and rationales from the human schools of thought in the 1990-2024 period, and create a coherent ideal-observer framework that fits the facts of the recent past better than any single human school of thought can do but that also simultaneously recognizes the danger of over-fitting the facts (hindsight bias). We can also then challenge these hypothesized-to-be-ideal-observer LLM s to make more accurate forecasts on out-of-sample questions, and craft better rationales, than any human school of thought.

The post Tetlock on Testing Grand Theories with AI appeared first on Marginal REVOLUTION.


Viewing all articles
Browse latest Browse all 188

Trending Articles